Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 892, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110417

RESUMO

A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide.


Assuntos
Biodiversidade , Ecologia , Animais , Cetáceos , Peixes , Som
2.
J Acoust Soc Am ; 154(5): 3466-3478, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019096

RESUMO

The relationship between sound complexity and the underlying morphology and physiology of the vocal organ anatomy is a fundamental component in the evolution of acoustic communication, particularly for fishes. Among vertebrates, the mammalian larynx and avian syrinx are the best-studied vocal organs, and their ability to produce complex vocalizations has been modeled. The range and complexity of the sounds in mammalian lineages have been attributed, in part, to the bilateral nature of the vocal anatomy. Similarly, we hypothesize that the bipartite swim bladder of some species of toadfish (family Batrachoididae) is responsible for complex nonlinear characters of the multiple call types that they can produce, supported by nerve transection experiments. Here, we develop a low-dimensional coupled-oscillator model of the mechanics underlying sound production by the two halves of the swim bladder of the three-spined toadfish, Batrachomoeus trispinosus. Our model was able to replicate the nonlinear structure of both courtship and agonistic sounds. The results provide essential support for the hypothesis that fishes and tetrapods have converged in an evolutionary innovation for complex acoustic signaling, namely, a relatively simple bipartite mechanism dependent on sonic muscles contracting around a gas filled structure.


Assuntos
Batracoidiformes , Bexiga Urinária , Animais , Fenômenos Biomecânicos , Som , Acústica , Mamíferos
3.
J Acoust Soc Am ; 154(5): 2928-2936, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938048

RESUMO

An unmanned surface vehicle (USV; Wave Glider) was deployed to study the coastal soundscape in shallow (less than 30 m) coastal waters off the coast of Cape Canaveral, FL, in July 2020 and January 2022. These surveys documented temporal and seasonal trends in biological sounds across a variety of habitats within an 812-km2 survey area, including sand shoals, sand-mud plains, and natural hardbottom. Among a broader diversity of identifiable and unidentifiable fish choruses recorded during the survey, a distinct and previously unidentified fish chorus was recorded; corroborating evidence suggests it and other sounds with similar spectral properties may be produced by Atlantic midshipman. Putative Atlantic midshipman sounds included an agnostic grunt and a seasonal chorus of persistent hums that peaked 3 h after sunset in the summer survey. While Atlantic midshipman have been demonstrated to have well-developed sonic muscles on their swim bladder, their acoustic behavior has not been previously described. Our use of a mobile passive acoustic platform combined with bottom sampling of fish communities highlights an important opportunity to identify previously undocumented biological sound sources in coastal habitats.


Assuntos
Batracoidiformes , Animais , Areia , Acústica , Sacos Aéreos , Aeronaves
4.
J Acoust Soc Am ; 154(4): 2708-2720, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888943

RESUMO

Substrate-borne communication via mechanical waves is widespread throughout the animal kingdom but has not been intensively studied in fishes. Families such as the salmonids and sculpins have been documented to produce vibratory signals. However, it is likely that fish taxa on or close to the substrate that produce acoustic signals will also have a vibratory component to their signal due to their proximity to substrates and energy transfer between media. Fishes present an intriguing opportunity to study vibrational communication, particularly in the context of signal production and detection, detection range, and how vibratory signals may complement or replace acoustic signals. It is highly likely that the vibrational landscape, the vibroscape, is an important component of their sensory world, which certainly includes and overlaps with the soundscape. With the wide range of anthropogenic activities modifying underwater substrates, vibrational noise presents similar risks as acoustic noise pollution for fishes that depend on vibrational communication. However, in order to understand vibrational noise, more empirical studies are required to investigate the role of vibrations in the fish environment.


Assuntos
Perciformes , Vibração , Humanos , Animais , Ruído/efeitos adversos , Acústica , Peixes
5.
Ecol Evol ; 11(6): 2701-2716, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767830

RESUMO

Geographic variation in bird song has received much attention in evolutionary studies, yet few consider components within songs that may be subject to different constraints and follow different evolutionary trajectories. Here, we quantify patterns of geographic variation in the socially transmitted "whistle" song of Albert's lyrebirds (Menura alberti), an oscine passerine renowned for its remarkable vocal abilities. Albert's lyrebirds are confined to narrow stretches of suitable habitat in Australia, allowing us to map likely paths of cultural transmission using a species distribution model and least cost paths. We use quantitative methods to divide the songs into three components present in all study populations: the introductory elements, the song body, and the final element. We compare geographic separation between populations with variation in these components as well as the full song. All populations were distinguishable by song, and songs varied according to the geographic distance between populations. However, within songs, only the introductory elements and song body could be used to distinguish among populations. The song body and final element changed with distance, but the introductory elements varied independently of geographic separation. These differing geographic patterns of within-song variation are unexpected, given that the whistle song components are always produced in the same sequence and may be perceived as a temporally discrete unit. Knowledge of such spatial patterns of within-song variation enables further work to determine possible selective pressures and constraints acting on each song component and provides spatially explicit targets for preserving cultural diversity. As such, our study highlights the importance for science and conservation of investigating spatial patterns within seemingly discrete behavioral traits at multiple levels of organization.

6.
Biol Rev Camb Philos Soc ; 96(4): 1135-1159, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33652499

RESUMO

Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.


Assuntos
Acústica , Evolução Biológica , Animais , Fenótipo , Filogenia , Reprodutibilidade dos Testes
7.
Proc Biol Sci ; 288(1945): 20202712, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622137

RESUMO

Vocalizing animals have several strategies to compensate for elevated ambient noise. These behaviours evolved under historical conditions, but compensation limits are quickly being reached in the Anthropocene. Acoustic communication is essential to male bearded seals that vocalize for courtship and defending territories. As Arctic sea ice declines, industrial activities and associated anthropogenic noise are likely to increase. Documenting how seals respond to noise and identifying naturally occurring behavioural thresholds would indicate either their resilience or vulnerability to changing soundscapes. We investigated whether male bearded seals modified call amplitudes in response to changing ambient noise levels. Vocalizing seals increased their call amplitudes until ambient noise levels reached an observable threshold, above which call source levels stopped increasing. The presence of a threshold indicates limited noise compensation for seals, which still renders them vulnerable to acoustic masking of vocal signals. This behavioural threshold and response to noise is critical for developing management plans for an industrializing Arctic.


Assuntos
Focas Verdadeiras , Animais , Regiões Árticas , Camada de Gelo , Masculino , Ruído , Oceanos e Mares
8.
Mar Pollut Bull ; 161(Pt A): 111627, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096406

RESUMO

As part of the Deepwater Horizon Oil Spill Natural Resource Damage Assessment in the Gulf of Mexico, we conducted a large passive acoustic survey across the eastern Gulf continental shelf edge to assess impacts to sperm whale population. In the months immediately after the spill, sperm whale occurrence was significantly higher in areas closest to the spill. Over the following seasons in 2010-2011, we documented cyclical patterns of decreased and increased occurrence suggesting that this population exhibits a seasonal occurrence pattern in the region, with seasonal movements to other regions, and not likely directly influenced by the oil spill. Unfortunately, a lack of adequately scaled, pre-spill data on sperm whales, along with limitations on the survey duration constrain our ability to infer spill-related changes in sperm whale occurrence. However, our study establishes post-disaster baseline data for continued monitoring, and an expanded study design could provide a model for continued monitoring.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Golfo do México , Estações do Ano , Cachalote , Poluentes Químicos da Água/análise
9.
Glob Chang Biol ; 26(9): 4812-4840, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32450009

RESUMO

Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate-driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom-mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004-2010 and 2011-2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid-Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.


Assuntos
Acústica , Animais , Oceano Atlântico , Região do Caribe , Groenlândia , Sudeste dos Estados Unidos
10.
Glob Chang Biol ; 26(2): 734-745, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31729818

RESUMO

The North Atlantic right whale (Eubalaena glacialis) is one of the world's most highly endangered baleen whales, with approximately 400-450 individuals remaining. Massachusetts Bay (MB) and Cape Cod Bay (CCB) together comprise one of seven areas in the Gulf of Maine where right whales seasonally congregate. Here, we report on acoustically detected presence of right whales in MB over a nearly 6 year period, July 2007-April 2013, a time of both rapid ocean warming throughout the Gulf of Maine and apparent changes in right whale migratory dynamics. We applied an automated detection algorithm to assess hourly presence of right whale "up-calls" in recordings from a 19-channel acoustic array covering approximately 4,000 km2 in MB. Over the survey, up-calls were detected in 95% of 8 day periods. In each year, as expected, we observed a "peak season" of elevated up-call detections in late winter and early spring corresponding to the season when right whales congregate to feed in CCB. However, we also saw an increase in right whale occurrence during time periods thought to be part of the "off-season." With the exception of 2009-2010, when acoustic presence was unusually low, the mean percent of hours in which up-calls were detected increased every year, both during the peak season (from 38% in 2008 to 70% in 2012), and during the summer-fall season (from 2% in 2007 to 13% in 2012). Over the entire study, the peak season start date varied between 17 January and 26 February. Changes in right whale phenology in MB likely reflect broadscale changes in habitat use in other areas within the species range. This study demonstrates the value of continuous long-term survey datasets to detect and quantify shifts in cetacean habitat use as environmental conditions change and the long-term continued survival of right whales remains uncertain.


Assuntos
Baías , Baleias , Animais , Oceano Atlântico , Ecossistema , Maine , Massachusetts
11.
Biol Lett ; 14(10)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355679

RESUMO

Ocean noise varies spatially and temporally and is driven by natural and anthropogenic processes. Increased ambient noise levels can cause signal masking and communication impairment, affecting fitness and recruitment success. However, the effects of increasing ambient noise levels on marine species, such as marine mammals that primarily rely on sound for communication, are not well understood. We investigated the effects of concurrent ambient noise levels on social whistle calls produced by bottlenose dolphins (Tursiops truncatus) in the western North Atlantic. Elevated ambient noise levels were mainly caused by ship noise. Increases in ship noise, both within and below the dolphins' call bandwidth, resulted in higher dolphin whistle frequencies and a reduction in whistle contour complexity, an acoustic feature associated with individual identification. Consequently, the noise-induced simplification of dolphin whistles may reduce the information content in these acoustic signals and decrease effective communication, parent-offspring proximity or group cohesion.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Ruído/efeitos adversos , Vocalização Animal/fisiologia , Acústica , Animais , Oceanos e Mares , Navios , Espectrografia do Som
12.
J Acoust Soc Am ; 144(2): 931, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30180661

RESUMO

Passive acoustic monitoring (PAM) is a widely used technique for studying the distribution and habitat use of cetaceans. The C-POD, an acoustic sensor with an onboard automated click detector, has been deployed in diverse acoustic environments, but studies verifying its offshore detection rates and factors affecting detection probability are scarce. To empirically evaluate the performance of C-PODs in detecting bottlenose dolphins (Tursiops truncatus), C-PODs were deployed alongside archival acoustic recorders 12-30 km offshore in the Northwest Atlantic Ocean. The C-POD and acoustic recordings, post-processed using PAMGUARD software, were compared for a period of 6852 h. C-POD false positive rates were very low (mean 0.003%), and positive hourly detection accuracy was very high (mean 99.6%). Analysis of the acoustic environment and dolphin click characteristics revealed that true positive detections by C-PODs were significantly more likely to occur when PAMGUARD detected more clicks and there was increased high frequency noise (>20 kHz), likely from distant or unclassified clicks. C-PODs were found to be reliable indicators of dolphin presence at hourly or greater time scales. These results support the application of C-PODs in PAM studies that aim to investigate patterns of dolphin occurrence, such as those related to offshore windfarms.


Assuntos
Acústica/instrumentação , Golfinho Nariz-de-Garrafa/fisiologia , Vocalização Animal , Animais , Automação/instrumentação , Ecolocação , Ruído/efeitos adversos , Sensibilidade e Especificidade , Razão Sinal-Ruído
13.
Sci Rep ; 7(1): 13460, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044130

RESUMO

Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.


Assuntos
Acústica , Baleias , Animais , Oceano Atlântico , Geografia , Dinâmica Populacional , Análise Espacial
14.
PLoS One ; 12(5): e0176653, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467455

RESUMO

Offshore windfarms provide renewable energy, but activities during the construction phase can affect marine mammals. To understand how the construction of an offshore windfarm in the Maryland Wind Energy Area (WEA) off Maryland, USA, might impact harbour porpoises (Phocoena phocoena), it is essential to determine their poorly understood year-round distribution. Although habitat-based models can help predict the occurrence of species in areas with limited or no sampling, they require validation to determine the accuracy of the predictions. Incorporating more than 18 months of harbour porpoise detection data from passive acoustic monitoring, generalized auto-regressive moving average and generalized additive models were used to investigate harbour porpoise occurrence within and around the Maryland WEA in relation to temporal and environmental variables. Acoustic detection metrics were compared to habitat-based density estimates derived from aerial and boat-based sightings to validate the model predictions. Harbour porpoises occurred significantly more frequently during January to May, and foraged significantly more often in the evenings to early mornings at sites within and outside the Maryland WEA. Harbour porpoise occurrence peaked at sea surface temperatures of 5°C and chlorophyll a concentrations of 4.5 to 7.4 mg m-3. The acoustic detections were significantly correlated with the predicted densities, except at the most inshore site. This study provides insight into previously unknown fine-scale spatial and temporal patterns in distribution of harbour porpoises offshore of Maryland. The results can be used to help inform future monitoring and mitigate the impacts of windfarm construction and other human activities.


Assuntos
Phocoena , Energia Renovável , Animais , Demografia , Meio Ambiente , Comportamento Alimentar , Maryland , Phocoena/psicologia , Energia Renovável/estatística & dados numéricos , Som , Análise Espaço-Temporal , Vento
15.
J Exp Biol ; 220(Pt 4): 652-666, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913600

RESUMO

Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology.


Assuntos
Evolução Biológica , Comportamento Alimentar , Perciformes/anatomia & histologia , Perciformes/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Fenômenos Biomecânicos , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Perciformes/genética , Filogenia
16.
Physiol Behav ; 157: 265-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26873411

RESUMO

Nutritional stress can have lasting impacts on the development of traits involved in vocal production. Cross-fostering experiments are often used to examine the propensity for vocal learning in a variety of taxa, but few studies assess the influence of malnourishment that can occur as a byproduct of this technique. In this study, we reciprocally cross-fostered sister taxa of voluble grasshopper mice (genus Onychomys) to explore their propensity for vocal learning. Vocalizations of Onychomys leucogaster did not differ between control and cross-fostered animals, but cross-fostered Onychomys arenicola produced vocalizations that were higher in frequency in a direction away from tutors. These same animals exhibited a transient reduction in body mass early in development, indicative of malnutrition. Our findings simultaneously refute vocal learning and support the developmental stress hypothesis to highlight the importance of early ontogeny on the production of vocalizations later in life.


Assuntos
Cuidados no Lar de Adoção , Aprendizagem/fisiologia , Vocalização Animal/fisiologia , Acústica , Animais , Animais Recém-Nascidos , Índice de Massa Corporal , Masculino , Camundongos , Análise de Componente Principal , Especificidade da Espécie
17.
Adv Exp Med Biol ; 875: 371-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26610981

RESUMO

In September and October 2011, a seismic survey took place in Baffin Bay, Western Greenland, in close proximity to a marine protected area (MPA). As part of the mitigation effort, five bottom-mounted marine acoustic recording units (MARUs) collected data that were used for the purpose of measuring temporal and spectral features from each impulsive event, providing a high-resolution record of seismic reverberation persistent after the direct impulse. Results were compared with ambient-noise levels as computed after the seismic survey to evidence that as a consequence of a series of repeating seismic impulses, sustained elevated levels create the potential for masking.


Assuntos
Acústica , Ar , Monitoramento Ambiental/métodos , Som , Fatores de Tempo
18.
J Acoust Soc Am ; 135(5): 3066-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24926502

RESUMO

Several marine autonomous recording units (MARUs) were deployed in northeastern Gulf of Mexico from 2010­2012 to study the acoustic ecology of Bryde's whales (Balaenoptera edeni) following the Deepwater Horizon oil spill. However, the acoustic repertoire of this sub-population is poorly documented, presently limiting the efficacy of acoustic monitoring applications. Numerous stereotyped, low-frequency signals from a putative biological sound source were found throughout the recordings. Sounds fell into three categories distinguished by spectral and temporal properties. Multiple calls overlapped temporally on individual MARUs, suggesting that multiple sources produced these sounds. The basic features are similar to those from other mysticetes, but they differ from any previously published sounds. Since Bryde's whales are the most common mysticete in the Gulf and have previously been observed within the recording area on multiple occasions, it is likely that Bryde's whales are the most probable source of these sounds. These results potentially identify a suite of previously undocumented calls from Bryde's whales, which could facilitate future passive acoustic monitoring efforts to better understand the population dynamics and status of this sub-population.


Assuntos
Balaenoptera/fisiologia , Vocalização Animal , Acústica , Animais , Comportamento Animal , Golfo do México , Poluição por Petróleo , Estações do Ano , Espectrografia do Som , Fatores de Tempo
19.
J Exp Biol ; 217(Pt 13): 2377-89, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24737759

RESUMO

Toadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'. Hum duration varied nearly 1000-fold, lasting for minutes at a time, with stable harmonic stacks and little envelope modulation throughout the sound. By contrast, grunts were brief, ~30-140 ms, broadband signals produced both in isolation and repetitively as a train of up to 200 at intervals of ~0.5-1.0 s. Growls were also produced alone or repetitively, but at variable intervals of the order of seconds with durations between those of grunts and hums, ranging 60-fold from ~200 ms to 12 s. Growls exhibited prominent harmonics with sudden shifts in pulse repetition rate and highly variable AM patterns, unlike the nearly constant AM of grunt trains and flat envelope of hums. Behavioral and neurophysiological studies support the hypothesis that each sound type's unique acoustic signature contributes to signal recognition mechanisms. Nocturnal production of these sounds against a background chorus dominated constantly for hours by a single sound type, the multi-harmonic hum, reveals a novel underwater soundscape for fish.


Assuntos
Percepção Auditiva , Batracoidiformes/fisiologia , Vocalização Animal , Animais , Masculino , Estações do Ano , Comportamento Sexual Animal , Washington
20.
Mov Ecol ; 2(1): 24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25709833

RESUMO

BACKGROUND: Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. RESULTS: Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. CONCLUSION: This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train duration suggests different behavioural functions or use of these calls at different latitudes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...